

DRIVE

SERVOMATE ${ }^{\circledR}$ disc couplings

SERVOMATE ${ }^{\circledR}$ disc couplings have been specially designed for servomotor applications. The aluminium hubs and the compact design provide low mass moment of inertia resulting in a reliable and maintenance free coupling for high speeds. The double disk pack execution has been designed for applications with radial misalignment. Note: It is possible to have aligned keyways upon inquiry.

	$\begin{gathered} \mathrm{T}_{\mathrm{KN}} \\ {[\mathrm{Nm}]} \end{gathered}$	$T_{K \text { max }}$ [Nm]	Torsional rigidity C_{T} [$\mathrm{Nm} / \mathrm{rad}$]		Max. speed [rpm]
			GSM	GSMC	
0-6	20	40	12.000	6.000	16.000
0-6	30	60	30.000	15.000	12.000
0-6	60	120	60.000	30.000	10.000

*= with max bore.
**= prebored not in tolerance.

Size	GSM misalignment			GSMC misalignment		
	Radial $[\mathrm{mm}]$	Axial $[\mathrm{mm}]$	Angular $\left[{ }^{\circ}\right]$	Radial $[\mathrm{mm}]$	Axial $[\mathrm{mm}]$	Angular $\left[{ }^{\circ}\right]$
$\mathbf{1 5}$	-	0,5	1	0,16	1,0	2
$\mathbf{2 0}$	-	0,6	1	0,25	1,2	2
$\mathbf{2 5}$	-	0,8	1	0,30	1,6	2

Size	Trasmissible torque [Nm] related to shaft diameter [mm]														
	$\varnothing 10$	$\varnothing 11$	$\varnothing 12$	014	Ø15	$\varnothing 16$	019	$\varnothing 20$	Ø22	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35
15	20	22	24	28	30	32	38	40	-	-	-	-	-	-	-
20	-	-	24	28	30	32	38	40	44	48	50	-	-	-	-
25	-	-	-	-	55	59	70	73	81	88	92	103	110	117	128

Coupling	GSM	020	MS	Screw tightening torque	Nm
1 disc pack execution: GSM 2 disc packs + spacer execution: GSMC			TKN	Coupling nominal torque	Nm
			$\mathrm{T}_{\text {K max }}$	Coupling maximum torque	Nm
			C_{T}	Torsional rigidity	Nm/rad
Size			J	Moment of inertia	$\mathrm{Kg} \cdot \mathrm{m}^{2}$
			W	Weight	kg

Selection in according to DIN 740.2

The coupling must be chosen so the applied working loads do not exceed the allowable values whatever the working conditions are.

1. Check the load with respect to the nominal torque

The nominal coupling torque must be greater than or equal to the nominal torque of the drive machine for all working temperatures.

$$
\mathrm{T}_{\mathrm{KN}} \geq \mathrm{T}_{\mathrm{N}} \cdot \mathrm{~S}_{\theta} \cdot \mathrm{S}_{\mathrm{D}}
$$

2. Check the load with respect to the torque peak values

The maximum coupling torque must be greater than or equal to the torque peaks that occur during operation for all working temperatures.

$$
\mathrm{T}_{\mathrm{KN}} \geq \mathrm{T}_{\mathrm{S}} \cdot \mathrm{~S}_{\theta} \cdot \mathrm{S}_{\mathrm{D}}+\mathrm{T}_{\mathrm{N}} \cdot \mathrm{~S}_{\theta}
$$

Motor-side peaks: $T_{S}=T_{A S} \cdot \frac{1}{m+1} \cdot S_{z}$
Driven-side peaks: $T_{S}=T_{L S} \cdot \frac{m}{m+1} \cdot S_{z}$
Or, in case of sporadic spikes: $\quad T_{K \text { max }} \geq T_{S} \cdot S_{\theta} \cdot S_{D}+T_{N} \cdot S_{\theta}$
If the peak does not cover the nominal T_{N}, ontribution, the $T_{N} S_{\theta}$ factors can be disregarded.

Calculation coefficients

$\mathbf{S}_{\theta}=$ Temperature factor

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$-30^{\circ} \mathrm{C} /+90^{\circ} \mathrm{C}$
S_{θ}	1

Starting frequency factor

S / h	<20	<60	<120	<180	<240	>240
$\mathrm{~S}_{\mathrm{z}}$	1	1,2	1,4	1,6	1,8	2

$S_{D}=$ Torsional rigidity factor

Tooling machines	Positioning system	Speed and angular acceleration indicator
1,5	2	$2,5 / 4$

Per macchine utensili - servomotori applicare 1,5-2.
$\mathbf{m}=$ Mass factor $=\frac{J_{A}}{J_{L}}$

